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Localization of electromagnetic waves in a two-dimensional random medium
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Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured
cavities, localization of electromagnetic waves in two dimensions is studiedab initio for a system consisting of
many randomly distributed two-dimensional dipoles. A set of self-consistent equations, incorporating all orders
of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically
for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible
in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is
revealed as a unique property differentiating localization from either the residual absorption or the attenuation
effects.
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When propagating through a medium consisting of ma
scatterers, waves will be scattered by each scatterer.
scattered waves will be again scattered by other scatte
Such a process will be repeated to establish an infinite re
sive pattern of multiple scattering. As a result, the wa
propagation may be significantly altered@1#. It is now well
known that the multiple scattering of waves is responsi
for many fascinating phenomena, ranging from phenom
of macroscopic scales such as twinkling lights in the even
sky, modulation of ambient noise in the oceans, and elec
magnetic scintillation of turbulence in the atmosphere,
phenomena of microscopic or mesoscopic scales includ
random lasers@2#, and electronic resistivity in disordered so
ids. It has also been proposed that under certain conditi
the multiple scattering can lead to the unusual phenome
of wave localization, a concept originally introduced to d
scribe disorder induced metal-insulator transitions in el
tronic systems@3#.

Over the past two decades, localization of classical wa
has been under intensive investigations, leading to a v
large body of literature~e.g., Refs.@4–20#!. Such a localiza-
tion phenomenon has been characterized by two levels.
is the weak localization associated with the enhanced b
scattering. That is, waves which propagate in the two op
site directions along a loop will obtain the same phase
interfere constructively at the emission site, thus enhanc
the backscattering. The second is the strong localizat
without confusion often just termed as localization, in whi
a significant inhibition of transmission appears, and the
ergy is mostly confined spatially in the vicinity of the emi
sion site.

While the weak localization, regarded as a precurso
the strong localization, has been well studied both theor
cally ~e.g., the monograph in Ref.@17#! and experimentally
~e.g., Ref.@18#!, observation of strong localization of class
cal waves for higher than one dimension remains a subjec
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debate@19–21#, primarily because a suitable system is ha
to find, and the observation is often obscured by such effe
as the residual absorption@21# and scattering attenuation.

In this paper, we wish to present a simple but realis
system to study the phenomenon of strong localization
two dimensions. The system we consider stems from
previous research on enhancement and inhibition of elec
magnetic radiation in structured media. For example, Ku
@22# used the model to describe the effect of a metallic m
ror on the radiation from a nearby excited molecule, wher
Chanceet al. @23#, used to explain the experimental data
Drexhage. Later, Erdoganet al. @24#, and Wang, Ye@25# em-
ployed the model to analyze the effects of the cylindrica
periodic structure on the radiation of an enclosed tw
dimensional~2D! dipole. Inspired by the work of Erdoga
et al. @24#, we construct a system consisting of many 2
dipoles. The propagation of electromagnetic~EM! waves in
such a system is formulated rigorously in terms of a set
coupled equations, and then is solved numerically. We sh
that a strong localization of EM waves is possible in th
system. In line with the work on acoustic localization@26#, a
phase diagram method is used to describe localization of
waves. Since the system considered here results from
practical application of light emission in structures, an e
perimental verification may be readily realized.

Following Erdoganet al. @24#, we consider 2D dipoles a
an ensemble of harmonically bound charge elements. In
way, each 2D dipole is regarded as a single dipole line, ch
acterized by the charge and dipole moment per unit len
Assume thatN parallel dipole lines, aligned along thez axis,
are embedded in a uniform dielectric medium andrandomly

located atrW i ( i 51,2, . . . ,N). The averaged distance betwee
dipoles isd. A stimulating dipole line source is located atrWs ,
transmitting a continuous wave of angular frequencyv. By
the geometrical symmetry of the system, we only need
consider thez component of the electrical waves.

Upon stimulation, each dipole will radiate EM waves. T
radiated waves will then repeatedly interact with the dipol
forming a process of multiple scattering. The equation
motion for thei th dipole is

-
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d2

dt2
pi1v0,i

2 pi5
qi

2

mi
Ez~rW i !2b0,i

d

dt
pi for i 51,2, . . . ,N,

~1!

wherev0,i is the resonance~natural! frequency,pi , qi , and
mi are the dipole moment, charge, and effective mass
unit length of thei th dipole, respectively.Ez(rW i) is the total
electrical field acting on dipolepi , which includes the radi-
ated field from other dipoles and also the field directly fro
the source. The factorb0,i denotes the damping due to ener
loss and radiation, and can be determined by energy con
vation. Without energy loss~to such as heat!, b0,i can be
determined from the balance between the radiative and
brational energies, and is given as@24#

b0,i5
qi

2v0,i

4emic
2

, ~2!

with e being the constant permittivity andc is the speed of
light in the medium separately.

Equation~1! is virtually the same as Eq.~1! in Ref. @24#.
The only difference is that in Ref.@24#, Ez is the reflected
field at the dipole due to the presence of reflecting surrou
ing structures, while in the present case the field is from
stimulating source and the radiation from all other dipole

The transmitted electrical field from the continuous li
source is determined by the Maxwell equations@24#

S ¹22
]2

c2]t2D G0~rW2rWs!524m0v2p0pd~rW2rWs!e
2 ivt,

~3!

where v is the radiation frequency, andp0 is the source
strength and is set to be unit. The solution of Eq.~3! is
clearly

G0~rW2r s
W !5~m0v2p0!ipH0

(1)~kurW2rWsu!e2 ivt, ~4!

with k5v/c, andH0
(1) being the zeroth order Hankel func

tion of the first kind.
Similarly, the radiated field from thei th dipole is given by

S ¹22
]2

c2]t2D Gi~rW2rW i !5m0

d2

dt2
pid

(2)~rW2rW i !. ~5!

The field arriving at thei th dipole is composed of the direc
field from the source and the radiation from all other dipol
and thus is given as

Ez~rW i !5G0~rW i2rWs!1 (
j 51,j Þ i

N

Gj~rW i2rW j !. ~6!

Substituting Eqs.~4!, ~5!, and~6! into Eq.~1!, and writing
pi5pie

2 ivt, we arrive at
04560
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~2v21v0,i
2 2 ivb0,i !pi5

qi
2

mi
FG0~rW i2rWs!1 (

j 51,j Þ i

N
m0v2

4p

3 iH 0
(1)~kurW i2rW j u!pi G . ~7!

This set of linear equations can be solved numerically forpi .
After pi are obtained, the total field at any space point can
readily calculated from

Ez~rW !5G0~rW2rWs!1(
j 51

N

Gj~rW2rW j !. ~8!

In the standard approach to wave localization, waves
said to be localized when the square modulus of the fi
uE(rW)u2, representing the wave energy, is spatially localiz
after the trivial cylindrically spreading effect is eliminate
Obviously, this is equivalent to say that the further away
the dipole from the source, the smaller its oscillation amp
tude, expected to follow an exponentially decreasing patt

To this end, it is instructive to point out that an alternati
two-dimensional dipole model was deviced previously
Rusek and Orlowski@14#. The authors derived a set of linea
algebraic equations, which is similar in form to the abo
Eq. ~7!. However, there are some fundamental differen
between the two models. In Ref.@14#, the interaction be-
tween dipoles and the external field is derived by the ene
conservation, while in the present case the coupling is de
mined without ambiguity by the Newton’s second law. T
former leads to an undetermined phase factor. According
e.g., Refs.@24,25#, the energy conservation can only give th
radiation factor in Eq.~2!. We would also like to point out
that the set of couple equations in Eq.~7! is similar in spirit
to the tight-binding model used to study the electronic loc
ization @3,27#.

There are several ways to introduce randomness to
~7!. For example, the disorder may be introduced by r
domly varying such properties of individual dipoles as t
charge, the mass or the two combined. This is the most c
mon way that the disorder is introduced into the tigh
binding model for electronic waves@27#. In the present
study, the disorder is brought in by the random distributi
of the dipoles.

Before moving to solve Eq.~7! for the phenomenon o
localization of EM waves, we discuss a general property
wave localization. The energy flow of EM waves isJW;EW

3HW . By invoking the Maxwell equations to relate the ele
tric and magnetic fields, we can derive that the time avera
energy flow is

^JW & t[
1

TE0

T

dtJW;uEW u2“u, ~9!

where the electrical field is written asEW 5eWEuEW ueiu, with eWE

denoting the direction,uEW u andu being the amplitude and th
phase, respectively. It is clear from Eq.~9! that whenu is
constant, at least by spatial domains, whileuEW uÞ0, the flow
2-2
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would come to a stop and the energy will be localized
stored in the space. In the localized state, a source ca
longer radiate energies. Alternatively, we can write the os
lation of the dipoles aspi5upi ueiu i. By studying the square
modulus ofpi in the form of urW i2rWsuupi u2, and its phaseu i ,
we can also investigate the localization of EM waves. N
here that the factorurW i2rWsu is to eliminate the cylindrical
spreading effect in 2D as can be seen from the expansio
the Hankel functionuH0

(1)(x)u2;1/x. That the phaseu is
constant implies that a coherence behavior appears in
system, i.e., the localized state is a phase-coherent stat
previously discussed@26#. It is a unique feature of wave
localization, and has also been shown to be related to e
tronic localization~e.g., Ref.@28#!.

For simplicity yet without losing generality, assume th
all the dipoles are identical and they are randomly distribu
within a square area. The source is located at the center~set
to be the origin! of this area. For convenience, we make E
~7! nondimensional by scaling the frequency by the re
nance frequency of a single dipolev0. This will lead to two
independent nondimensional parametersb5(q2m0/4m) and
b085(v/v0)(b0 /v0). Both parameters may be adjusted
the experiment. For example, the factorb0 can be modified
by coating layered structures around the dipoles@24#. Then
Eq. ~7! becomes simply

~2 f 2112 ib08!pi5 ib f 2Fp0H0
(1)~kurW i2rWsu!

1 (
j 51,j Þ i

N

piH0
(1)~kurW i2rW j u!G , ~10!

with f 5(v/v0). Equation~10! can be solved numerically
for pi and then the total field is obtained through Eqs.~3!,
~5!, and ~8!. In the calculation, we scale all lengths by th
averaged distance between dipolesd. In this way, the fre-
quencyv always enters askd and the natural frequencyv0
as k0d. We find that all the results shown below are on
dependent on parametersb, b0 /v0, and the ratiov/v0 or
equivalentlyk/k05(kd)/(k0d). Such a simple scaling prop
erty may facilitate designing experiments.

We have first computed the transmitted intensity avera
over the random distribution of the dipoles as a function
nondimensional frequencykd. The results indicate that th
natural frequency of the dipoles is altered by the multi
scattering of EM waves, and is shifted towards the low
frequency end. We also find that the transmission is sign
cantly suppressed in a range of frequencies slightly above
natural frequency of a single dipole, suggesting the str
localization in this range of frequencies. This helps us
search for the frequencies where the strong localizatio
most prominent. We show an example below.

By settingb5b0 /v051023 andk0d51, we find a strong
localization of EM waves at, for instance,v/v051.008. In
this case, the natural frequency of the dipoles is shifted
around 0.9v0. A typical picture of wave localization is
shown in the bottom part of Fig. 1 for an arbitrary rando
distribution of 400 dipoles. To describe the phase behavio
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the system, we assign a unit phase vector,uW i5cosuieWx

1sinuieWy to the oscillation phaseu i of the dipoles. HereeW x

andeW y are unit vectors in thex andy directions, respectively
These phase vectors are represented by a phase diagra
the x-y plane with the phase vectoruW i being located at the
dipole to which the phaseu i is associated. The phase beha
ior of the system is depicted by the top portion of Fig. 1.

Here it is clearly shown that the field energy is strong
localized near the transmitting source, and, as expected
energy decreases almost exponentially along the radial d
tion. Meanwhile, the system reveals an in-phase phen
enon: nearly all the phase vectors of the dipoles point to
same direction, exactly opposite to the phase vector of
source, i.e., the dipoles tend to oscillate out of phase with
source. It is easy to see that such a coherent behavior e
tively prevents waves from propagation. The picture rep
sented by Fig. 1 fully complies with the general descripti
of wave localization stated above. The energy localization
Fig. 1 is also in qualitative agreement with that observed
the microwave localizaton@11,12# and the acoustic localiza
tion in water with air cylinders@26#.

We note from Fig. 1 that near the sample boundary,
phase vectors start to point to different directions. This
because the numerical simulation is carried out for a fin
sample size. For a finite system, the energy can leak ou

FIG. 1. Top: The phase diagram for the two-dimensional ph
vectors defined in the text; the phase of the source is assumed
zero. Each vector is located at the site of the dipole; thus the lo
tions of the phase vectors also denote the random distribution o
dipoles. Bottom: The spatial distribution of energy (;uEu2). Here
the geometrical factor has been removed. Here the energy has
nondimensionalized and is plotted in the natural log scale.
2-3
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the boundary, resulting in disappearance of the phase co
ence@29#. When enlarging the sample size by adding mo
dipoles while keeping the averaged distance between dip
fixed, we observe that the area showing the perfect ph
coherence will increase accordingly. Another factor affect
the phase coherence behavior, and subsequently the
localization, is the damping factor. When the absorption
added, the in-phase behavior will be degraded, and the w
will become delocalized gradually, in agreement with t

FIG. 2. Energy versus the distance away from the source. Ag
we removed the cylindrical spreading factor. Here the energy
been nondimensionalized and is plotted in the natural log scale
e

E

an
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previous simulation on acoustic localization in bubbly wa
@29#. Though degrading, we find that the localization c
sustain a substantial variation in the damping factor, mak
the system a good candidate for observing the localiza
phenomenon.

To find the localization length in Fig. 1, we plot the tot
energy in all directions as a function of the distance from
source. The results are presented by Fig. 2. Here, the num
cal data are shown by the black squares, and the result fi
from the least squares method is shown by the solid line;
deviation from the line reflects the fluctuation due to t
random distribution. It shows that after removing the spre
ing factor, the data can be fitted bye2r /j. From the slope of
the solid line, the localization lengthj is estimated as aroun
2.02d, which is in the vicinity of the localization length 1.6d
estimated experimentally for microwave localization in 2
dielectric lattices@12#.

Finally, we point out that as expected, further numeri
results show that the above localization behavior holds t
for any random configuration of the dipoles.

In summary, we have presented a model system to st
the localization of EM waves in 2D random media. The r
sults show that spatially localized EM waves can be reali
in this simple but realistic disordered system.

This work is supported by the Bai Yu Lan Fund of Shan
hai and the NSF of China Grants Nos.~20074007,
90103034!.
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